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Introduction

Energy efficiency program assumptions are dependent on the data used as inputs (Drury, 2016). We use
weather data when predicting consumption for the lifetime of energy efficiency projects and make program
assumptions that influence what measures are offered by a utility. For example, the number of heating degree
days (HDD) or cooling degree days (CDD) that are in a utility territory influence whether the utility focuses
on for reducing heating or cooling load in their offered portfolios. Furthermore, program staff use expected
weather to predict how much energy a project might save, and to make judgements about what projects, and
when, a customer might be interested in undertaking. The weather data that we use for predicting consumption
has impacts throughout the entire lifecycle of energy efficiency programs: from initial assumptions to grid level
capacity planning. However, the weather data needs to be accurate for it to fulfill its requirements. NYSERDA's
Residential Retrofit Impact Evaluation Report noted that TMY3 “may no longer represent the current weather
conditions in New York” and recommended that a vetted replacement be made available for future program
years (York et al. 2020). However, there are no vetted replacements being used in these state Technical
Resource Manuals (TRMs). Advances in methodology in the US are not adopted quickly enough to arrest
climate change.

Energy efficiency programs rely on being able to use a typical meteorological year (TMY3) to normalize energy
consumption for any given year. In these programs, energy savings are expected to last for a certain number of
years after a project is implemented. In many TRMs, the TMY 3 data is a central tenet of the required calculations
to quantify energy consumption and demand. TMY3 data is the basis on which the data is normalized to
differentiate the savings achieved in the first year from the savings expected in the future. In lllinois, where the
data in this study is from, utilities use “Cumulative Annual Persisting Savings” to make long term estimates of
how much energy is saved from a given program intervention for utility planning and regulatory compliance
(Gold and Nowak 2019). Aside from the few programs that model savings, most programs have their savings
deemed by previous analysis that use TMY3 data for their assumptions.

Importantly, when the use of TMY3 data is included in a state TRM, the continued use is required by all further
stakeholders. For example, program engineers use it, and the private industry that serve these utilities also
build processes/invest in tools around this. Program engineers identifying how much energy can be saved from
any given improvement use weather data and assumptions about energy usage data to calculate how much
heating and cooling is expected to estimate how many hours the equipment will be running at what capacity
(Korn and John Walczyk 2016; Jenkins et al. 2010; Nursalam, 2013). These estimations are what are used to
claim and report energy savings achieved. The assumptions used for resource programs have wide-reaching
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implications as the weather data becomes more outdated. In a review of TRMs and evaluation reports, it was
discovered that TMY3 data is explicitly used in calculation assumptions in Indiana, lowa, Hawaii, Texas, New
Mexico, New Jersey, Maryland, Delaware, and lllinois. These are among the states with the most aggressive goals
and are rated highly on ACEEE’s state scorecard (ACEEE 2022). The industry will often say, “deeming is outdated,
let's actually measure it” but even in measuring it, we'’re still assuming outdated weather data as an input, so
regardless of the savings being deemed or measured, the outputs are not accurate because the weather data used
for technical assumptions may not be appropriate.

The remaining introduction explains the uses of TMY3 with respect to normalizing whole building models to a
typical year in IPMVP Option C whole building modeling, other choices for weather sources, the applicability of
TMY3 data in the face of climate change, and the availability of TMY3 data. The scope section details the methods
and data used throughout the study to assess both the temperatures in the created temperature datasets and the
regression specification used to model the predicted energy consumption. The results section serves as a combined
results and discussion section, where the data is further explored, sliced, diced, compared, and extrapolated. The
conclusions section provides limitations of the study, and distinct conclusions from the results section.

IPMVP Option C and Normalized
Energy Consumption

In the International Performance Measurement and Verification Protocol, each method for determining energy
savings of a project is outlined. The method that this study focuses on is Option C, which uses metered energy data
and measures the impact of all energy efficiency projects. Energy efficiency programs that use Option C typically
have access to utility meter data or billing data and are implementing projects that are expected to save at least 5%
of facility consumption (EVO 2022).

Energy Efficiency projects that are reported in terms of first-year savings usually need to be normalized for typical
weather to be included in a portfolio. Normalized energy savings report the normal (fixed) conditions of a building in
question, and both the baseline and reporting period are adjusted to the TMY conditions (EVO 2022). In the state of
lllinois, where this study is focused, the Technical Resource Manual v10 normalizes several of the deemed measures
using TMY3 data and requires the use of normalization for other programs using typical weather (IL SAG 2021).

TMYs contain one year of hourly data that best represents median weather conditions over a multiyear period. The
data are considered “typical” because the entirety of the original solar radiation and meteorological data is condensed
into one year’s worth of the most usual conditions. Although a TMY can be thought of as a median, the methods
used to calculate it consider many factors beyond a simple calculation of median values, including solar resource
data and weather data such as wind speed and ambient temperature (Wilcox and Marion 1990). To calculate a TMY,
a multiyear data set is analyzed and 12 months are chosen from that time frame that best represent the median
conditions. For example, a TMY developed from a set of data for the years 1998-2005 might use data from 2000 for
January 2003 for February, 1999 for March, and so on (NREL, Section 2.1, Page 11). The datasets are smoothed at
the beginning and end of the months to allow for reasonable continuity. The most current version of the TMY3 data
uses datasets from 1976-2005 from the National Solar Radiation Data Base Update. The dataset was constructed
using 8760 hourly data for one year for 1020 locations across the USA (TMY locations). The data considered to be
typical is based on the typical mean month from the available years, and then added to the dataset as the typical
month for any given year. This data is used for a variety of purposes where accurate weather data is necessary.
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TMY3 is used across the USA for practitioners using IPMVP Option C as their method to measure savings for
energy efficiency projects. Nevertheless, there are limitations to the TMY3 dataset including data availability
and relevance as the dataset becomes more outdated. This research explores the creation of typical
temperature datasets comprising the most recent two and five years of temperature data. These datasets
use only temperature data rather than all the inputs in TMY3, since the temperature data is all that program
evaluators use when assessing models using IPMVP Option C.

The study is designed to answer two research questions:

1. To what extent are predicted energy consumption values different using
three- and five-year temperature datasets compared to TMY3 data?

2. How different are the temperatures in the TMY3 dataset compared to
temperature datasets using two years and five years?

TMY3 data is now 17 years old, and the rate of climate change is accelerating every year. The background section
explores the datasets that exist for weather normalization, the applicability of the dataset the face of accelerating
climate change, and the geographic coverage and availability of TMY3 as it exists today.

Weather Choices

TMY3 is not the only dataset that is used for weather predictions across the world. In addition to the TMY data, there
are Climate Normals, which are created by the National Climatic Data Center (NCDC). This data is a three-decade
average of weather data that includes temperature, precipitation, snowfall, sea level pressure, wind, clouds, and
more and estimate weather for a single weather data at a time (Durre et al. 2013; Arguez et al. 2012). The newest
Climate Normals have been updated to reflect averages from 1991-2020. This data provides easy comparisons
to the 30-year average and are designed to be easy to understand and reflect the impact of the changing climate
on day-to-day experiences. Additionally, Climate Normals release supplementary 15-year datasets, with the most
recent from 2006-2020 that captures more recent data only, which can be more useful to represent current and future
weather conditions (Drury and Gattie-Garza 2016).

In addition to TMY and Climate Normals, US based weather data is available from TMYx, which is a repository of
free climate data for building performance simulations, and California Climate Zone Data (CTZ) developed for the
California Energy Commission and is updated through 2016.

Weather data has commercial, research, and other applications across the world. The datasets, in their most common
forms, allow users to access hourly meteorological values that show typical conditions at a specific location over an
extended period of time (Wilcox and Marion 1990). Researchers seeking to understand solar energy and daylight
availability have used TMY data to predict future conditions of global irradiance that are used to improve solar model
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accuracy (Perez et al. 1990. Any time future energy performance needs to be assumed, and an annual estimate is
required, some kind of typical data must be used. The model coefficients generated by the solar model is reapplied
onto the TMY data to produce an estimate of “typical” consumption in any given year. In Option C modeling, only the
temperature data is used to normalize models for a typical year. With so many critical applications, it is vital that TMY
data be accurate to allow for the end uses to be representative of actual conditions. In 2017, CXassociates compared
TMY3 data to 2016, 2015, and 2014 weather data. At the time of that publication, each of the preceding years had
been the warmest year on record for their territory (Vermont). Only February was reasonably close (on average)
to the TMY3 data. They recommended abandoning TMY3 data due to its inability to adapt to our rapidly changing
climate and using instead a three-year average (2017).

There are other concerns as well for industries outside of energy efficiency. A 2015 white paper by Clean Power
Research explored the accuracy of solar photovoltaic system performance when using TMY 3 data. They noted that
accuracy is dependent on the accuracy of TMY3 data, which is considered to be the gold standard for typical weather
data. However, they found that it had limited usefulness for designing renewables projects. The data was insufficient
for them to use for the sizing and financing for solar projects, and profitability because the TMY3 data was not precise
enough for acceptable modeling, it increased risk for all stakeholders and jeopardized the profitability of the project.
They suggested alternatives that included more recent data in their datasets on an ongoing basis.

Geographic Coverage

The 2015 Clean Power Research also focused on another availability issue of TMY3 - the number of TMY locations
available in the dataset. They noted that NREL recommends not using TMY3 data for projects that are more than 25
km removed from the nearest TMY 3 location, meaning that TMY3 data should not be used by more than 75% of US
locations. The best data is only available at 6% of US sites. The paper concluded that choosing the right dataset for
your TMY data is crucial. Not only can TMY3 be a challenge to incorporate into granular research, it can be difficult
to find the data at all. Between the years of 2016-2020, the webpages where TMY3 was hosted were completely
unavailable due to a lack of funding.

Scope

The sample consisted of a representative sample of 497 sites from 221 zip codes in northern lllinois, where TMY 3 use
is required to normalize savings from energy projects. The study considered electric data only; heating responses
are electric heating, rather than gas heating. The year 2021 is used as the baseline year for savings prediction to
capture post-COVID building behavior. The two-year and five-year typical temperature year datasets (2TTY and
5TTY) use temperature data from 2016-2021 and 2019-2021 as the basis of the typical years. The buildings in the
study have annual kWh consumption ranging from 27 MWh to over 99 GWh. This study focuses on Option C whole
building modeling.

Construction of the typical temperature years

The TTYs are constructed using hourly temperature data from the Weather Company for the number of years in the
TTY (two or five). The Weather Company offers NOAA and other stations with algorithmic cleaning to ensure that
there is no missing data. The TTY creation process begins with creating a typical month for each year to represent a
normal month in a normal year. To create the typical month, the median temperature is calculated for every hour of
the year. For each month, the Euclidean distance is calculated for each individual month. The distance is calculated
between the vector of temperature values for that individual month and the vector of temperature values for that
month of the median year.
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For example, January 2019 is compared to population of Januarys and compared to the median year. The January
that is closest to the median year is selected as the typical January. This process is repeated for each month resulting
in the selection of one actual month for each month of the year that will make up the TTY. The typical year in this
study is referred to as TTY (meteorological year): 2TTY is the TTY using the two most recent years of data, and 5TTY
is the TTY using the five most recent years. The typical year is not the median of each hour but rather comprises the
months that are closest to their associated median month. This is a representation of the process followed to create

TMY3. Taking the median across all hours should eliminate outliers that may not be representative of conditions.

Typical Year Energy Consumption

Energy consumption data, for the site, are extracted with hourly temperature data and fit to an hourly consumption
model. This model is then applied to TMY3, 2TTY, and 5TTY data to predict energy consumption.

Let

e (beanhour (YYYY/MM/DD hh),
e temp(i) is the temperature in degrees Fahrenheit at hour i,

e E(i) be the total electricity consumption for hour i,
e HOW;(i) be 1 if hour i is the j th hour of the week and 0 otherwise (Monday at 00:00 is

0),

e H(i) be the heating component comprised of four parameters (a piecewise-linear fit to

the heating response),
o H(i) = hyTi(Q) + hyTo (i) + hsT3(0) + hyTo (i)

T; (i) = min(max(55 — temp(i), 0),10)
T, (i) = min(max(45 — temp(i),0), 10)
T5(i) = min(max(35 — temp(i),0),15)
T4(i) = max(20 — temp(i), 0)

hq, hy, hs, h, are coefficients to be fit

e ((i) be the cooling component comprised of four parameters (a piecewise-linear fit to the

cooling response)
(@] C(l) = ClTl(i) + Csz(i) + C3T3(i) + C4T4(i)

T; (i) = min(max(temp(i) — 55,0),10)
T, (i) = min(max(temp(i) — 65,0),10)
T5(i) = min(max(temp(i) — 75,0),15)
T, (i) = max(temp(i) — 90,0)

€1, €s,C3, C4 are coefficients to be fit

Then the hourly clectricity consumption is modeled as,

7x24-1

E@) = Z BHOW (i) + H(i) + C(i)

=0

The regression model allows for the prediction of consumption for any collection of temperature and calendar data.
The data is then normalized to the three temperature datasets to create predicted consumption values of what
consumption would be during the temperatures represented in the 2TTY, 5TTY and TMY3 datasets. This study uses
interval data from 1/1/2021 through 12/31/2021 for the regression, and the results are normalized onto the TTY data
to compare the differences in predictions.
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Results

Predicted Consumption

The coefficients from the fit model were used to predict consumption using both sets of TTY data and the TMY3
data. The cooling coefficients were applied to the TMY3, 2TTY and 5TTY datasets to create predicted normalized
consumption contributions for each temperature range in the model. Cooling bins included 90° and hotter, 75°-90°,
65°-75°, and 55°-65°. Heating Bins included 20° and below, 20°-35°, 35°-45°, and 45°-55° degrees.

Table 1. Consumption Compared to TMY3

Temperature Bin 2 TTY Mean 5 TTY Mean
90° and hotter 72%* 66%*

75° to 90° 107% 112%*

65° to 75° 107% 113%

55° to 65° 102% 105%*

45° to 55° 106% 111%

35°to 45° 106%* 113%*

20° to 35° 64%* 89%

20° and below 28%* 22%*

Note: Values with an asterisk (*) following the value indicate a statistically significant difference from TMY3 data at p<0.05

The values in the table represent the predicted consumption using TTYs compared to the TMY3 predicted
consumption. So, for the 90° and hotter bin, the 2TTY data is 72% as hot as the TMY3 consumption, and is statistically
significantly different, and the 5TTY data is 66% of the TMY3 consumption for that bin (also significantly different.)
The mid-temperature range consumption is hotter for both datasets. The S5TTY consumption is significantly different
than the TMY3 data for five of the eight bins, and the 2TTY consumption is significantly different in four of the eight
temperature bins. The coefficients times the total cooling degree hours in a range represents how often and how
much the temperature was in or higher than that range. Together, the values in the bins give a tiered representation
of the distribution of temperatures at that location in aggregate.

The consumption in the 90° and hotter temperature bin was significantly lower for both TTY datasets due to the
overrepresentation of a 104° day in the TMY 3 dataset. Except for the 20° and below bin, where the TTY consumption
is 28% and 22% of the TMY3 consumption due to extremely cold temperatures in the TMY3 dataset, the values are
as expected, with consumption being higher in using the TTY datasets. The results are inconsistent with respect to
their actual difference or statistical significance from the TMY3 dataset. Consumption for some of the temperature
bins were different from the TMY3 data, specifically in the mid temperature ranges. The 2TTY dataset did not show
much difference from the TMY 3 dataset, with only one midrange temperature being different from the TMY 3 dataset,
which indicates that two years of data may be insufficient. The 5TTY dataset had half of the mid-range temperatures
come in with higher consumption for those ranges than the TMY3 dataset. The highest and lowest ranges were
discarded due to the inclusion of severe weather events in the TMY3 dataset that could not be replicated with the
TTY datasets. The TMY3 dataset, as mentioned above, had significant representation from a 104° day, which led
to the 90° and hotter temperature bin showing extreme consumption due to air conditioning load. Additionally, this
analysis only includes electric data, and thus may not be appropriate to model the extremely low temperatures below
20°F.

7

12



While there are significant variations across temperature ranges, overall, the differences in total consumptions are
not statistically significant. Although there is some fluctuation in temperature contributions, there is not enough when
considered at the whole building level, including the temperature independent contributions.

There are questions that the consumption similarities evoke. The consumption analysis is one part of the exploration
between the sufficiency of the short TTY datasets. We also explored differences in the mean temperatures themselves
between TMY3 and 2TTY and 5TTY, as well as the geographic coverage of the datasets with respect to the territory
of interest.

Temperature Differences

The temperature ranges have a wider variance in the TTY datasets. The mean temperatures for the TTY datasets
have a higher mean than the TMY3 dataset by 1.2°F, however, the 42% of the values in the TMY3 dataset include
the impact of a 104°F day in 2005, leading to a general upward skew that is not represented in the TTY datasets.
The minimum temperature in the TTY datasets was 7.8°F lower than TMY3. Figure 2. Average heating/cooling
contributions to consumption for each temperature bin shows the means and medians across the 497 sites,
demonstrating the differences in the overall available dataset. The high median (skewed due to the 104°F day) on
the TMY3 values demonstrates that five years may not be sufficient to capture all temperature ranges.
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Figure 1. Mean and median values for typical temperature and meterological year datasets

The left side of the figure shows the temperature means from each dataset. The TMY3 dataset had the lowest overall
mean at 51.8, despite the contribution of the 104°F day. The 2TTY had the highest mean of 52.4°F and the 5TTY
had a mean of 52.2°F. T-tests were run comparing the mean temperatures in the TMY3 and each TTY dataset.
Additionally, t-tests were run between each temperature bin in the datasets. All t-tests comparing TTY to TMY3
indicated statistically significant differences between each temperature at 99% confidence (see Table 2).
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Table 2. Mean number of degree hours for each temperature bin, by dataset

Temperature Bin 2 TTY Mean Degree Hours 5 TTY Mean Degree Hours TMY3
90° and hotter 90.3 90 126
75° to 90° 7,688 7,959 7,283
65° to 75° 20,158 21,463 19,154
55° to 65° 33,380 34,496 32,675
45° to 55° 43,063 43,642 41,050
35° to 45° 29,431 30,730 27,682
20° to 35° 12,731 14,960 19,830
20° and below 1,877 1,641 7,206

All the temperatures in each dataset are significantly (p<0.05) different from the TMY3 dataset. One difference
between the datasets of interest is the higher number of degree hours represented from extreme temperatures in the
TMY3 dataset compared to the TTY datasets. The TMY3 dataset has 126-degree hours in the 90° and hotter bin,
while all the midrange temperatures are higher for the TTY datasets. Then, at the bottom of the temperature range
at 20° and below, the TMY3 dataset has more degree days than either TTY dataset by a factor of four. The extreme
temperatures have much more representation in TMY3. It also looks as though the shoulder seasons are getting
longer and winter is shrinking, there are more 50-60-degree days instead of 30-degree days.

Note that the total consumptions are not significantly different, but that some temperature bins, and some heating/
cooling consumption contributions are significantly different. Why is this? Looking at Figure 2 which shows the
average heating/cooling contributions to consumption for each temperature bin, one can see that the increased
contribution for cooling in the TTYs relative to the TMY is offset by the decrease in heating (specifically at the extreme
cold temperatures).
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Figure 2. Average heating/cooling contributions to consumption for each temperature bin

This figure shows the contribution of each temperature bin to the overall consumption of all the buildings in the
sample in aggregate. From left to right, the differences in consumption from the 2TTY, 5TTY, and TMY3 datasets
are obvious. The TMY3 dataset over represents the extremely cold temperatures, which do not appear in the TTY
datasets even though the mean minimums are lower in the TTY datasets by 7.8°F.
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Geographical Coverage

TMY3 data is appropriate to use within 25km of the location of the weather station. In our sample frame, 66% of
our sites are inappropriate to use with TMY3 data due to their distance from their weather station. It is important for
IPMVP Option C models that they be able to normalize savings using typical weather as required by state TRMs. If
TMY3 is inappropriate to use due to geographical coverage, it is necessary to normalize using another dataset, such
as the TTY datasets. As shown in Figure 3 there are only ten weather locations available in northern lllinois for which
TMY temperature data is available. The availabilities of the TTY datasets are superimposed on the TMY3 image in
grey to illustrate the difference in coverage. The image on the right shows the TTY zip code coverage.
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Figure 3. Mean temperature of available geographic regions in lllinois, TMY3 on left, TTY datasets on right

Using zip code data provides 221 individual points of temperature data in contrast to TMY3’s ten locations on which
to base consumption predictions, assess temperature and climate, and resolve missing data.

Limitations and Conclusions

There were two primary limitations to this study that further research could continue to explore:

1. Comparing to TMY3 only and not CWECS, CanadaData, TMYx or other international weather sources
limits the generalizability to TMY3 compared to TTYs.

2. Our geographical area was limited to northern lllinois due to the requirement that TMY3 data
be used in that territory for Option C models. This study should be repeated with real buildings
in other climate zones. A more humid and hotter climate could represent the impact of an
increase of summer, rather than just the decrease of winter.

With those limitations in mind, there are a few conclusions that can be drawn from the analysis. Predicted consumptions
only varied for about half of the temperature ranges in the dataset. However, the TMY3 dataset includes so many
outliers that it is difficult to compare the impact on buildings. This indicates that although the TMY3 dataset is not set
up to represent extreme events, the data available is sufficient in TMY3 to create reasonable Option C models that
are like using more recent temperature even with the mean temp increase of 2 degrees between the TMY3 dataset
and the TTY datasets. The lack of representation of the 104°F day in the 2TTY and 5TTY datasets, as well as the
minimum of the TMY3 dataset, which was a -12°F day, show that the 5TTY dataset may not be sufficient to capture
all temperature ranges necessary to represent all conditions.
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Additionally, the increase in acceptability for geographic coverage of TTY data using zip codes and weather stations
rather than the availably TMY3 weather stations can lead to more appropriate representation. With only ten weather
stations in the TMY3 dataset and 221 in the TTY datasets for northern lllinois, and with 66% of our data being outside
the recommended 25km range, it is apparent that at the individual building level, it is more appropriate to use TTY
data since that follows the NREL recommendation.

Most importantly, the extremely cold temperatures in the TMY3 are not represented in the data used fit the models.
If that’s the case, how can an energy model reasonably extrapolate to those extreme temperatures? Should they be
in a typical year used for this purpose? Furthermore, there is a large non-heating/cooling contribution which means
that it would take a substantial change to yield a change in consumption. Even though the total consumptions are
not significantly different, it is not because there are not significant differences, it is just that they are canceling out
to some extent.

If a building installed a heating only energy efficiency project, predicted savings using TMY3 are going to assume
that the temperature drops to -13° every year, but the temperature does not decrease to that degree each year. The
model would then be overrepresenting the amount of time that a building spends at that extremely low temperature,
and the savings would be inflated. Furthermore, TMY3 is not representing the increase in medium high temperatures,
so cooling measures will be undervalued. When constructing a whole building model that accounts for both heating
and cooling, the values are cancelled out, leading to no discernable difference in consumption. However, not all
projects are complete retrofits that upgrade or install both heating and cooling equipment. Should these extreme
temperatures be used for projecting savings when they include these more extreme temperatures? What'’s typical
about that?

In M&V 3.0, practitioners are going to want further disaggregated savings estimates: not just overall, but by time of
use, by time of year, etc. The industry cannot count on heating and cooling cancellation. To properly project energy
savings for grid capacity planning and climate change mitigation, the world needs more accuracy and more precision.
If TMY3 is used to do normalized energy savings in lllinois, on aggregate, cooling will be underrepresented, and
heating will be overrepresented. This matters for energy efficiency resource planning, meeting climate change goals,
and for grid capacity planning.
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